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1. Analytical solution and simulations of toy model 

To gain better insight into the effect of the product mutational mechanism we studied a simple 

toy model. We showed that the effect of sum-mutations is equivalent to free diffusion in 

isotropic medium along equal fitness lines with no preference to any specific solution on this 

line. The effect of product-mutations in contrast is described by diffusion in the log-transformed 

parameter domain. In the original domain the population is log-normally distributed and 

asymptotically approaches zero. If selection were absent this mutational mechanism would 

nullify all network interactions. However the combination of the product-mutations with 

selection for achieving a certain goal results in solutions with maximal number of zeros that still 

satisfy the goal. The dynamics and type of solutions demonstrated in this model is 

representative of those we obtained in simulations of the more complex matrix-multiplication 

model described in the main text.  

We study the simplest model in which there is an excess degree of freedom, namely a two 

variable model such that a modular solution is enabled. We assume that the fitness function 

depends on the two variables only through their sum. That is, the population exists in a 2-

variable space       and its goal is to reach the line where      . All points on this line are 

equally fit, but only two of them - the intersections with the axes (0,1) and (1,0) are sparse. This 

is because we interpret the variables as interaction intensities between network components 

and a sparse network is one in which some interactions are zero. Fitness is evaluated by the 

square distance from this line                 . Although the model does not include 

terms which depend on products of variables (as in the more general model that we simulated) 

it is still useful for comparing the effects of the sum and product mutational schemes on the 

evolutionary dynamics.  

In our analysis of the toy model we made a number of simplifying assumptions with respect to 

the simulations. First we assume continuous time, instead of the discrete generations in the 

evolutionary simulation. We also take the limit of infinitely large mutation rate with 

infinitesimally small mutation size, such that their product is finite, and can be described by a 

diffusion coefficient (compare to [1]). Furthermore we take the limit in which population size is 

very large, so that fluctuations and random drift due to finite size effect are negligible.   

The population dynamics is naturally decomposed into two axes: along equal-fitness lines 

dynamics is mutation (diffusion) dominated; in perpendicular to such lines it is determined by a 

combination of mutation and selection (see Fig. S1). We solve analytically the dynamics of the 

diffusion-dominated axis, and quantify the speed with which sparse solutions are approached 

with product-mutations. We also obtain a steady-state solution for the mutation-selection axis, 

showing that it obeys a Boltzmann distribution. We demonstrate our findings by detailed 

stochastic simulations (see below), showing good agreement with the analytical solutions. 
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Fig S1: Decomposition of the     problem into its natural axes. Color represents fitness. Along equal fitness lines 
only mutation (diffusion) plays a role. Arrows show the other axis along which both selection and mutation are active. 
The maximal fitness line       is shown in bold.  

 

Dynamics under sum-rule mutation 

The mutation-selection dynamics of the population is approximately captured by the Fokker-

Planck (abbreviated below ‘FP’) equation [2]. We denote by          the population distribution 

at time  . It is subject to the potential                   (selection), and diffusion with 

coefficient   (mutation): 

                                             

The Fokker-Planck equation is the continuous second order approximation of the more general 

master equation describing the dynamics of a population subject to probabilistic transitions 

between states. For example in the 1-dimensional case the master equation takes the form:  

                              

 

              

 

 

where ( , )w z x  is the transition probability from z  to x . By second order approximation we 

neglect transitions between grid points which are far from one another (i.e., mutations generally 

have a small effect). This assumption translates to w  being a narrow function of its arguments 

and is common practice in the literature (see for example [3]). We also assume that the 

transition probability ( , )w z x  depends only on the difference in fitness between x  and z . For 

example                    . With this we obtain:  

                                                                   

                                       . 
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Expanding this equation to first order in     and second order in   , and rearranging we obtain 

the Fokker-Planck type equation as above with the diffusion coefficient D given by         as 

usual [3]. 

Taking into account the specific form of the fitness function   in this problem, it is convenient to 

make the following coordinate transformation: 

      

      

With that, the potential and the FP equation transform to: 

              

                                               . 

This equation can be solved by separation of variables. We assume that the population already 

converged to the line of optimal fitness,    . Therefore the time dependence of   enters only 

through                     . The equation then reads: 

           

 
 

                       

 
    o  t  

For     the equation in   describes a population growing at rate  . In our simulations we 

keep the population size constant, thus we set here    , and obtain the following equations 

for      and       : 

              

                          

Thus, the dynamics of the   component is described by the diffusion equation with diffusion 

coefficient    . Its solution is the normal distribution with variance that grows linearly in time 

[2,4]: 

       
 

     
  

  

   . 

The solution for the   component is the Boltzmann distribution with potential   and effective 

‘temperature’   [2]:  

     
       

        
. 

This steady state solution manifests the balance between selection and mutation by the ratio 

   . A low (high)     ratio results in a wide (narrow) distribution around the line of maximal 

fitness. In summary, along characteristics perpendicular to the optimal fitness line, the 
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population density decays with the distance from the maximal fitness line; along characteristics 

parallel to this line the population diffuses freely. Our conclusions apply to any potential of the 

form                . In the simulations, we used a specific function (see below).  

This behavior is demonstrated in Figs. S2-S4, showing the distributions of     and     and 

the time-dependence of their moments obtained in simulations with sum-mutations.  

 

Fig S2:     values with sum mutations are normally distributed in the     problem - simulation results. Colored 
solid curves illustrate distributions of     values at different time points. Dashed black curves show best fit (in 
terms of maximal likelihood) to Gaussian – with excellent agreement. Time   is given in number of generations in the 
simulation. Simulation parameters:   - selection with coefficient     ; mutations were normally distributed 
 (0,0.05). Population was initiated at the origin. Results based on 10,000 points.  
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Fig S3:     distributions with sum mutations converge to a stretched exponential distribution - simulation results. 
Colored solid curves illustrate distributions of     values at different time points. Dashed black curve is fit to an 

effective potential               with a=4.6, b=11.1, c=1. All simulation points from        were pooled together 
to produce the fit. Results pertain to the same simulations as in the previous figure.  

Dynamics under product-rule mutation near the sparse solution (0,1) 

We now turn to product-rule mutations. By using the FP equation to describe mutations we 

assume that they are localized. This is a reasonable assumption for sum-mutations, but not for 

product-mutations, which can span a broad distribution of outcomes (see the “  ali g effe t” i  

the next section). To remedy this, we transform the equation to the logarithm of the original 

variables. Product is then transformed into sum, and the locality assumption of mutations is 

justified again.  

If the product-rule mutation scheme is not symmetric, (in our case it is biased towards 

decreasing parameters values) a drift term should be added which is linear in the first derivative 

of the population density. Note that by the nature of the transformation to log-space, a product-

rule that is biased towards decreasing values translates in log-space to a biased random walk 

toward  −∞  Using the transformation:  
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Fig S4: Time dependence of the mean and variance of     and     in sum-rule simulations support our 
decomposition into two functional axes. Selection rapidly drives the     component to converge to the line 
      with constant variance. In contrast, the     component freely diffuses, exhibiting a variance that grows 
linearly in time, in accordance with the analytical solution. The red line is a linear fit. Time   is given in thousands of 
generations in the simulation.  

 

where    and    are the log-transformed variables of   and   respectively. In equation: 

                                                                   

Here     is the velocity of the drift towards   . As with the symmetric case, this equation 

can be derived from the master equation under the assumption that the transition probability 

depends not only on the fitness difference between neighboring grid points, but also on the 

biased random walk probability to decrease. For example, in 1D the probability   to move to the 

left (toward  −∞  is larger than ½.  The value of   in 1D is given by              . Note that 

in the symmetric case      , and   naturally vanishes.  

The fitness function   (the potential in the FP equation) is: 

                     
 

. 

We proceed by concentrating on one of the two sparse solutions to our problem (0,1). The 

sparse solution is obtained in the limit           ∞   . The asymptotic form of the fitness 

in this limit again depends only on one of the variables 
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. 

With this in mind, the FP equation in log-transformed variables becomes: 

        
   

      
   

      
      

     
     

      . 

Using similar reasoning as in the sum-mutation case, we substitute               :  

         
   

      
    

    
   

     
     

           
    

Similarly, the solution for the Y component is: 

      
                

                 
         

        
      

               
, 

where the main difference is that the distribution is not necessarily symmetric. Here the 

population is concentrated around         with variance determined by   and skewness 

determined by the ratio     . Again note that in limit     the distribution is symmetric. The 

solution for the   component in log-space is again a Gaussian with variance that grows linearly 

in time, and a mean that moves to the left with velocity  :  

        
 

     
  

        
 

     

Transforming to the original variables we found: 

                       
  

 
 

or 

          
 

      
  

             

       

This is a lognormal distribution [5] with mode (most probable value) that converges to zero like 

              , but mean that diverges like              note that    . For large   the 

leading term in the asymptotic expansion of this distribution goes like   
 
  
  

  

     

 
 
  

  
 

   
. This result 

with    , agrees with the result in [6] that the product of infinitely many random variables 

converges to the log-normal distribution. 

Simulation results demonstrating this behavior are shown in Figs. S5-S7.  
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In summary, we have shown by means of analytical solution and simulations that in the 2-

variable toy model evolutionary dynamics with biased product-rule mutations bring us to 

solutions in which one of the variables asymptotically approaches zero. These are the sparsest 

solutions possible in this problem. These sparse solutions are strongly preferred although they 

show no fitness advantage relative to many other solutions that are equally fit but non-sparse. 

In contrast, with sum-mutations there is no preference to any specific solution as long as it 

achieves the goal. In the main text we show simulation results of a more complex matrix-

multiplication model, which exhibits a very similar behavior. Under product mutations, the 

solutions obtained there are those that have the maximal number of zeros that still satisfy the 

goal, where under sum-mutations again arbitrary solutions that satisfy the goal are obtained. 

The likelihood of the latter solutions to be modular is very low.  

 

Fig S5:   values under product mutations are log-normally distributed and asymptotically approach zero in the     
problem - simulation results. Colored solid curves illustrate distributions of log(x) values at different time points. 
Dashed black curves show best fit (in terms of maximum likelihood) to Gaussian – with excellent agreement. Time   is 
given in number of generations. Simulation parameters:  -selection with    , mutation normally distributed 
 (1,0.2). Population was initiated at the origin. In order to concentrate on one of the two sparse solutions, only 
simulation points with         were considered in this analysis (roughly ~6000 points at each time point).  
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To estimate the temporal behavior of population distributions in this toy model we performed 

repeated runs of our simulation. At each run we randomly sampled a single individual from the 
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with a different random seed, to assure independence of the distinct runs. Simulation consisted 

of repeated mutation-selection rounds, as described in the Methods Section of the main text. 

We used  -selection with    5. Mutations were normally distributed  (0,0.05) for sum rule 

mutations and  (1,0.2) for product rule mutations. Simulation was initiated with the population 

normally distributed around the origin        , with std 0.1 in both   and   axes.  

 

Fig S6:   values with product mutations converge to a stretched exponential distribution in the     problem - 

simulation results. Colored solid curves illustrate distributions of   values at different time points. Dashed black curve 

shows fit to an effective potential           
 
 with a=21.19, b=14.8, c=0.67. Time   is number of generations. Results 

pertain to the same simulation points as in the previous figure (i.e. the   values corresponding to        ).  

The  -selection includes fitness scaling of the form:    
             

              
 

. However, the relation to 

the potential is more complicated. Thus, we fit the simulation results to an effective potential of 

the form           . 

Under these initial conditions the product-rule mutations have equal probability to converge to 

either one of the two sparse solutions. Simulation results are thus a superposition of the two 
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To plot distributions of product-mutation simulation we used uniform binning in the log domain. 

Fits to Gaussian are maximum likelihood estimators under the assumption that the data is 

normally distributed,  al ulated u i g the Matlab fu  tio  ‘ ormfit’   

 

 

Fig S7: Time dependence of   moments under product-rule mutations agrees with log-normal distribution 

predicted by analytical solution – simulation results. The variance of log( ) is found to grow linearly in time and the 

mean of log( ) decreases linearly, as predicted by the analytical solution, assuming biased random walk in the log-

space. Top row: red lines show best linear fits. In contrast, both the mean and the variance of   converge to a 

constant (red lines were added to guide the eye). Results pertain to the same simulations as in the previous two 

figures.  

 

2. Mutation properties 
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Product mutations have the property that the pre-mutation value scales the distribution of 
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asymmetric product mutations. Thus, the smaller is the pre-mutation value, the less likely it 

be ome  to “e  ape” from it by mutation. Intuitively this explains why product mutations keep 

small interaction terms small.  

Sum-mutations in contrast do not have this “  ali g effe t” - the distribution of mutation 

outcomes has the same width, regardless of the pre-mutation value. Thus product-mutations 

are fundamentally different from sum-mutations – see illustration in Fig. S8.  

 

 

Fig S8: Product-mutations have a scaling effect, but sum-mutations do not. We compare the distribution of possible 
outcomes due to a single symmetric product-mutation (left) to that of a symmetric sum-mutation (right). We plot 
here the distribution of possible outcomes following such mutations to different pre-mutation values x0. With sum-
mutations the pre-mutation value has no effect on the width of the distribution of outcomes, and the distribution is 
simply relocated. In contrast, under product-mutations the smaller is the initial value, the narrower is the distribution 
of outcomes – that is the scaling effect. Thus the smaller are the values, the harder it is to escape. Here mutations are 
symmetric: either drawn from log-normal with  =0,  =0.2 which have product symmetry (left) or drawn from normal 
distribution with  =0,  =0.2 which has sum-symmetry.  

Symmetry of product-mutations 

The (a)symmetry of mutations determines whether the center of the mutational distribution 

moves or not, which is a different effect. In biological mutations both the scaling and the 

relocation effects exist. The discussion of mutations symmetric with respect to product is thus 
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nature of mutations and their asymmetry. This discussion is meant to distinguish between the 

mathematical effects of these two properties, but not to argue that symmetric mutations are 

biologically relevant. 

 

Which mutations are symmetric with respect to product?  

To require symmetry with respect to product means that following many multiplications the 

geometric mean of the product will converge to 1: 

          
 
   

 =1. 

Taking the logarithm of this equation it is equivalent to: 

      
 

 
      
 
     . 

Then by the law of large numbers     
 
 is a random value with expectation zero. Assume that 

    
 
 is normally distributed, then    is log-normally distributed with parameter    . To show 

this in an alternative way, assume that    is distributed with probability density   and equate 

the probabilities to multiply by   and by    : 

            
 

 
   

 

 
 

 

    
 . 

Assume that    is small, we can approximate the interval  
 

 
 

 

    
  

  

  .  

The equation becomes:             
 

 
  

  

  . Taking       to be the log-normal distribution, 

then: 

          
     

     
 

        
 
 
         

    
 
 

  
 

 To satisfy this equation for every   we obtain that    , regardless of the value of  . 

Throughout this work, symmetric product-mutations were drawn from this distribution. The 

difference between the cumulative effect of symmetric and asymmetric product mutations is 

illustrated in Fig. S9.  
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Fig S9: We demonstrate the cumulative effect of symmetric and asymmetric product mutations in the absence of 
selection. We assume that the initial value is 1, and multiply it by 1000 random numbers drawn from one of several 
distributions (detailed below). We plot here the histogram of the logarithm of cumulative mutation outcomes. (A) 
Product symmetric mutations were drawn from the log-normal distribution with  =0,  =0.2. Because mutations are 
symmetric with respect to product, the histogram is concentrated around 0 in the log-space (that is around 1 in the 
original variables), which indicates no mutational bias. (B) Mutations drawn from Gamma distribution are biased to 
decrease. Thus after 1000 multiplications the histogram is concentrated around a negative value in the log-space 
(value<1 in the original variables). (C) The uniform distribution [0,1] is also biased to decrease. (D) The bias increases 
with time. Here we multiplied by 10,000 random numbers drawn from the Gamma distribution (compare to B – with 
only 1000 multiplications). The illustrated histograms are based on 1000 points each.  
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Both symmetric and asymmetric mutations lead to sparse/modular solutions: 

The symmetric and asymmetric mutations differ in their effect if we had only mutations active, 

but not selection. In the absence of selection  asymmetric mutations will bring all interactions to 

near-zero (given enough time), but symmetric mutations will not. If selection is active too, both 

symmetric and asymmetric mutations will result in sparse/modular solutions. With symmetric 

mutations, the reason for this is that selection breaks the symmetry. Under product-rule, 

mutations in the finite interval [0,1] are compensated by mutations in the infinite interval 

     . Thus selection for some finite goal value will always create a bias towards lower values, 

and thus produce a tendency to decrease, similarly to asymmetric mutations. In addition, our 

 imulatio   have demo  trated that the “ ymmetri ”  tate i  al o u  table: eve  a  light 

asymmetry is sufficient, because of the enormous number of generations in our simulations.  

We illustrate below simulation results with product mutations, both symmetric and asymmetric 

in the       problem, described in the previous section. As can be seen, both mutation 

types lead to sparse solutions, but with asymmetric mutations this effect is naturally stronger 

(Figs. S10-S11).  

 

Fig S10: Evolution with asymmetric mutations in the       problem. Mutations were drawn from a normal 
distribution N(1,0.2). The population distributions of   and   values at several time points are illustrated. As time 
goes on, the distributions become more and more concentrated around the sparse solutions (0,1) and (1,0). 
Simulation conditions are the same as in the previous section.  
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Fig S11: Evolution with product-symmetric mutations in the       problem. Mutations were drawn from a log-
normal distribution LN(0,0.2). The population distributions of   and   values at several time points are illustrated. As 
time goes on, the distributions become more and more concentrated around the sparse solutions (0,1) and (1,0). 
Simulation conditions are the same as in the previous section. 
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slow, whereas the latter technique is faster, but might lose beneficial solutions that have 

already been found (see discussion in [7] chap. 10). Fitness of all    individuals was evaluated 

by            , where       denotes the sum of squares of elements (Frobenius norm). 

This formula represents the Euclid distance of the matrix product from the goal [9]. The best 

possible fitness here is zero, achieved if      exactly. Otherwise, fitness values are negative. 

In the figures we show the absolute value of mean population fitness. The goal matrix was 

either diagonal      , nearly-diagonal (diagonal matrix with small non-diagonal terms), 

block-diagonal or full rank with no zero elements.   individuals were then selected out of the 

   population of original and mutated ones, based on their fitness. This mutation–selection 

process was repeated again and again until the simulation stopping condition was satisfied 

(usually when mean population fitness was less than 0.01 from the optimum).  

Mutation: We tested point mutations in our simulation and assumed statistical independence 

between mutations at different elements. We kept mutation rate such that on average 10% of 

the population members were mutated at each generation, so the element-wise mutation rate 

  for matrices of dimension   was at most 
   

      This relatively low mutation rate enables 

beneficial mutants to reproduce on average at least 10 times before they are mutated again. In 

simulations where we compared dependence on matrix dimension (Fig. 5) we used the same 

mutation rate at all dimensions, generally the one that pertains to the highest dimension used in 

the simulation.  

We randomly picked the matrix elements (in both   and  ) that would be mutated. Mutation 

values were drawn from a Gaussian (or log-normal or Gamma) distribution. For sum-rule 

mutation, this random number was added to the mutated matrix value:                or 

              , and for product- rule, the mutated matrix element was multiplied by the 

random number:                or               . Mean mutation value   was 

usually taken as 1, however we also tested other values of   (both larger and smaller than 1) 

and results remained qualitatively similar, only the time-scales changed.  

When we tested mutations which are symmetric with respect to product we took the log-

normal distribution with    .  

We also tested the dependence on the mutation size  , using         , and found similar 

results. In most simulation results shown here we used       (unless stated otherwise). 

Fitness convergence crucially depends on the mutation frequency and size, as demonstrated in 

our sensitivity test. Grossly speaking, a high mutation rate can speed up evolution at the 

beginning of the simulation, but can later on preclude slightly better mutants from taking over, 

because they are mutated again before they reproduce sufficiently. There is also a similar trade-

off with mutation size: large mutations can speed evolution at the beginning, but at the final 

stages the mutation size limits the precision with which the goal can be approached. 

Selection methods: We tested 3 different selection methods; all gave qualitatively very similar 

results with only difference in time scales. Most results presented here were obtained with 
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tournament selection (see [7] chap. 9):   sets, each containing   population members, were 

uniformly drawn with repetitions. The best individual at each set was then selected to be at the 

population next generation. This mimics the fact that an individual needs to outperform only 

others at its close vicinity, rather than the whole population. The parameter   can be used to 

tune the selection intensity (the larger it is, the stronger is the selection). In our simulations we 

set    . 

A other  ele tio  method te ted i  “tru  atio - ele tio ” or “eliti m”  Here population 

members were ranked by their fitness. The best half of members were selected and duplicated. 

We note that both methods are based on the fitness rank, rather than on its exact value, making 

fitness scaling unnecessary. Both methods gave very similar results.  

The third method used was proportionate reproduction with Boltzmann-like scaling [10–12]: 

here the relative fitness was computed as               
 . Evidently        , so that     is 

the probability of the  -th individual to be selected. The parameter   determines the selection 

strength, where at one extreme if    , all individuals are equally probable to be selected and 

at the other extreme if    , the best individual is selected with probability 1, while all others 

have probability zero to be  ele ted  To impleme t  ele tio  we the  exploited the “roulette-

wheel” algorithm [7,8] where a section of the interval [0,1] equal to     was assigned to the  -th 

individual.   Random numbers were then uniformly drawn from the interval [0,1]. The 

individuals whose sections contained such numbers were then selected (with repetitions).  

For a comparative test of the dependence of fitness achieved and the time needed to reach it on 

selection and mutation parameters see sensitivity test below.  

If selection is too weak (e.g.       in Boltzmann-like selection) sparse structures are obtained, 

but their fitness is far from optimal. If the fraction of individuals mutated at each generation is 

too high (e.g. every individual has on average one mutation per generation), then again the 

solutions obtained are bounded away from the optimum, because high fitness individuals are 

likely to suffer from additional deleterious mutation before they reproduce sufficiently. 

 

4. Evolutionary simulation parameter sensitivity test 

Here we show in Fig. S12 the dependence on mutation size and selection intensity   of the 

evolutionary simulation with the Boltzmann-like selection scheme. In this test we let the 

simulation solve a 1-  problem for a fixed number of generations (=800), with a single repeat 

for each parameter combination. We tested 6 different values of   (0.1-20) and 5 different 

values of the mutation size   (0.01-0.5). Here we plot either the mean population fitness (top 

row: A and B) or the best fitness obtained within the population (bottom row: C and D), reached 

within this fixed number of generations. In the left panels (A and C) each curve illustrates the 

dependence on   for a fixed mutation size, and the right panels (B and D) show the dependence 
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on mutation size where each curve was obtained for a different values of  . Curves in both left 

and right panels were created by the same simulation results. 

Alternatively, we tested how the time to reach a desired fitness (0.01 from the optimum) 

depends on these parameters in a 3-  problem. The number of generations was limited to 

500,000 and some parameter combinations failed to reach the required fitness by that time. 

Similarly, we show in Fig. S13 the dependence on   for fixed mutation size (A) or dependence on 

mutation size for fixed   (B).  

Based on these tests we chose to set the mutation size       and the selection intensity 

     (Boltzmann-like) or     (tournament).  

 

Fig S12: Dependence of the achieved fitness on selection strength and mutation size in a 1-D problem. 
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Fig S13: dependence of the time to reach a desired fitness value on selection strength and mutation size. 

5. Modularity: definitions and error calculation 

Definition of modularity: if the goal is diagonal, we define modularity as                 

where       and       are the mean absolute value of the non-diagonal and diagonal terms 

respectively. At each generation, the   largest elements of each matrix (both   and  ), were 

considered as the diagonal       and the rest      terms as the non-diagonal ones      . 

Averages were taken over matrix elements and over the population. This technique copes with 

the unknown location of the dominant terms in the matrices, which could form any permutation 

of a diagonal matrix. Thus,      : where at the two extremes, a diagonal matrix has   

 , and a matrix with equal terms has    . Since we choose the largest elements to form the 

diagonal, negative values of   are not allowed. When the goal is non-diagonal, one can use 

standard measures for modularity such as [13] [not used in the present study]. 

Calculation of time to modularity: we used the following approximation for fitness value when 

the goal is diagonal. Assume that   and   are  -dimensional matrices consisting of 2 types of 

terms: diagonal terms all with size   and non-diagonal terms all with size   and that the goal is 

        . The fitness then equals:  

                                          

We collect terms by powers of  , and obtain a constant term and terms with powers       . 

Modularity is obtained when the solution has the correct number of dominant terms 

appropriately located and their size is approximately     . At the beginning of the temporal 
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trajectory, when non-diagonal elements are relatively large,   is dominated by the       term. 

When a modular structure emerges, non-diagonal elements become relatively small, and the 

dominant term remaining in   is      . Our criterion for determining time to modularity was 

the time when the    term first became dominant, i.e. when              .   

Matrix permutations: For ease of presentation we permuted the   and   matrices, so that they 

form nearly-diagonal matrices. This applies to the cases when   is diagonal and   and   also 

evolve to be (nearly) diagonal. We used the same permutation for the rows of   and columns of 

 . Such permutation preserves the matrix product and is equivalent to simply changing the 

order of inputs. To find the correct permutation, we sorted each column of   in descending 

order. Then the first row in the sorted matrix had the   largest elements. We used the order 

vector of this first row (i.e. indices of rows where these elements were located in the original  ) 

as the required permutation.  

Calculation of error bars in time dependence on  : We repeated the simulation at each 

dimension either   140 times (      ) or    80 times (       ), initializing the 

Matlab random seed with a different integer number each time. At each run we measured time 

to reach fitness within 0.01 of the optimum and time to modularity, as explained above. As 

these times formed a broad and highly skewed distribution, we considered their median, rather 

than their mean. To estimate our error in this median estimator, we used the following 

bootstrapping procedure. We randomly formed sets of   samples (with repetitions) of 

simulation results. We constructed          such sets, and calculated the median of each. 

We then calculated the standard deviation of these median values. To estimate the error in the 

dependence of the time on  , we randomly picked one measurement from each dimension and 

then calculated the best line (in terms of least squares) connecting these points. We repeated 

this process 10,000 times, receiving each time different parameters for the best line. Errors in 

line estimation presented here, represent the 5% and 95% quantiles out of the obtained 

distribution of line parameters.  

 

6. LU decomposition - proofs 

An LU decomposition exists for every full rank matrix [14]. In such decomposition there is a total 

of      zeros in both   and   together. Here we prove that a larger number of zeros is not 

possible unless   has a zero term (or is not full rank).  

The      zeros can be partitioned between   and   in different ways: either equally (the LU 

decomposition, where   and   are triangular matrices), or all zeros in one of the matrices and 

none in the other or any other partition. 

Theorem: maximal number of zeros in LU decomposition of a full rank matrix with no zero 

elements is     . 
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Lemma: Let             be 2 different decompositions of the goal   with different zero 

partitions, such that all matrices are invertible. Then, there exists an invertible transformation 

matrix  , such that        and         .  

Proof: Define       
    . Then           

        and           
       

    
        

         .  

Q.E.D 

If a transformation exists between all pairs of decompositions, specifically we can choose       

in which   is full and   is diagonal, i.e. all      zeros are in     ow let’   he k what happe   

if we try to add one more zero. Then, because   is diagonal,                    ,     . 

Without loss of generality we set      , then essentially      , so   is not a general matrix. 

Alternatively if we set      , we will obtain that the  -th column of   is all zeros – hence   is 

not full rank.   

Q.E.D 

 

Theorem: If   is full rank but has   zeros, the maximal number of zeros in LU decomposition is 

      . 

As stated above, for a general full rank   a decomposition in which   is full and   is diagonal, 

(i.e. there is a total of      zeros) is possible.  

Now assume without loss of generality that      . Since   is diagonal           , so that     

must be zero too (      because otherwise a full column in   equals zero and then   is not 

full rank). Consequently, for every zero in  , we obtain exactly one additional zero in  , which 

proves our claim that for   with   zeros, we obtain a decomposition with exactly        

zeros.  

Due to the lemma above, these zeros can be split in different ways between   and  . 

Q.E.D 
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7. Nearly modular   - supplementary figure 

 

Fig S14: If the goal   is nearly diagonal, the evolutionary simulation with product-rule mutations reaches solutions 
in which   and   are nearly-diagonal too. We set   to be a matrix with values of 2 on its diagonal and 0.1 in its all 
non-diagonal terms. Here we show two examples of solutions obtained for    6 (top row) and    8 (bottom row). 
Numerical values are represented by color code when white represents zero. Matrices were permuted to form the 
most diagonal form (see above). 
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8. Mutation sign and distribution – supplementary figure 

 

Fig S15: Broad distribution of mutation values allows for negative as well as positive matrix values. Here we show 
the distribution of solutions to the     problem with product mutations normally distributed N(1,1). The solutions 
concentrate near the modular point (0,1). Inset demonstrates that the x values are in fact negative in this case. 
Simulation was run for 3000 generations. Mean x and y values are written on top of the graph.  
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9. Block diagonal goal – supplementary figure 

 

Fig S16: Comparison of product-rule vs. sum-rule mutations over a block-diagonal goal. The goal matrix here was 
the same block-diagonal goal as in Fig 2C (main text). Here we compare the different solutions obtained with product 
mutations (top row) to those obtained under sum-mutations (bottom row) with such a goal. Under product 
mutations, each block of the goal matrix is decomposed into a product of two triangular matrices – as happens for a 
general goal matrix. Under sum-mutations, we obtain non-modular solutions, as we did for diagonal goal matrices 
(compare to Fig.3 – main text). 
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